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A numerical selution has been found for the hyperbolic initinl-value
problem, which follows from the 16-moment set of equations
describing the wansport of a plasma in a strong magnetic field. in
addition to the time-dependent evolution of mass and momentum,
these equations describe the variations in anisotropic temperatures and
heat fluxes for both ion and electron species. The numerical solution
employs a high-order Godunov method to achieve third-order accuracy
in space and second-order accuracy in time. The method inciudes an
approximate Riemann solver which is suitable for a system of equations
that cannot entirely be expressed in conservation form. In addition, a
new technigque has been developed to overcome the stitfness that
occurs in regions where plasma flows are strongly reactive. Simple test
cases showing correct wave behavior are presented. D 1993 Academic

Press, Inc.

1. INTRODUCTION

This paper is a continuation of {6], where our basic
cquations are derived and their relevance in solving
problems in space plasma physics i1s demonstrated. These
transport equations are sufficiently different from standard
hydrodynamic or magnetohydrodynamic equations to
require special numerical treatment. Here we present a
numerical scheme to solve the equations. The paper is
self-contained; it can be understood witheut the knowledge
of 167,

A magnetized plasma generolly bas o farge number of
degrees of freedom. 1t therefore comes us no surprise that
equations describing the transport of a plasma can appear
intractabie. This is especially apparent in regions where
collisions between particles are infrequent. In this instance,
species distribution functions can depart significantly from
a Maxwellian; hence, low-order hydrodynamic equations
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are no longer applicable. To overcome this dcficiency,
generalized transport equations have been developed; see,
c.g.. [1, 27]. These transport cquations rctain the continuum
approach of the hydrodynamic equations but expand the set
of equations to include anisotropic pressures and heat
fluxes.

These higher-order transport equations are so com-
plicated that a general three-dimensional solution, analyti-
cal or numerical, has never been attempted. Two common
sets of higher-order transport equations are based on 16 and
20 moments, respectively, of Boltzmann'’s equation. Thus,
the 20-moment set includes 20 coupled, time-dependent
partial-differential equations for each plasma species; see,
e.g, 13] The 1o-moment set (see, eg., [4,5]) is based
on a bi-Maxwellian distribution function and includes 16
coupled equations for cach plasma species.

Considerable simpiification of the higher-order equations
occurs whenever the magnelic field is very large; see, e.g.,
[6]. In this instance, the magnetic field restrains plasma
Rows to follow magnetic field lines, so solutions to the trans-
port equations become one-dimensional in character. This
simplification of the 16-moment set of transport equations
has allowed numerical solutions to be attempted by
Khazanov er al. [7] and Mitchell and Palmadesso (8]
Unfortunately, these models hitve encountered nuwmerical
diflicuitics, ranging from stiffness to instability. 1t has becn
suggested that some of these problems may oceur as a result
of the truncation of the infinite system of coupled transport
equations used to derive the 16-moment set [97.

In this paper we describe a numerical model to solve the
hyperbolic initial-value problem that follows from the
16-moment set of transport equations in a strong magnetic
field. This new model uses a generalization of the charac-
teristic-based method devcioped by Godunov [10] and
later extended by Van Leer [ 11, 12] to achieve third-order
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accuracy in space and second-order accuracy in time. A
fundamental building block of Godunov-type methods is
the technique to solve the Riemann problem describing the
interaction of neighboring computational cells. The present
method includes a new modification of the “approximate
Riemann solver” of Roe [13], suitable for a system of
equations that cannot entirely be expressed in conservation
form. In addition, a new technique has been developed to
overcome the stiffness that occurs in regions where plasma
flows are strongly reactive. The overall method appears to
be free of the numerical instabilities in the heat fluxes
reported by Palmadesso et al. [9].

In the next section we describe the set of plasma transport
equations that have been solved numerically, These equa-
tions describe a plasma consisting of ions of a single species
and electrons, although the numerical method described in
Section 3 can be generalized to include multiple ion specics.
In Section 4 some numerical solutions to the transport
equations are presented which clearly show the propagation
of ion waves through the plasma. The results presented in
the paper are summarized in the concluding section.

2. TRANSPORT EQUATIONS

We seek a one-dimensional numerical solution to the set
of transport equations given by Gombosi and Rasmussen
[67] along a magnetic field line. These equations can be
written in the non-conservative form,
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D + Ew S=8;+8, +8,,

(1)

where ¢ is time, x is distance in the direction of the magnetic
field B, and the operator, D, /Dt =3d/3r+u, -V, s the total
time derivative for an element of plasma drifting per-
pendicular to B with velocity u, (V denotes differentiation
in the perpendicular direction). In the case of strong
magnetic fields, plasma movement perpendicular to the field
line is small compared to the parallel movement; therefore,
terms describing perpendicular transport can be treated as
source terms, The drift velocity u, and spatial derivatives in
the perpendicular direction are assumed to be given for a
specific problem. The elements of the vector w(x, £} are
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where p is mass density, & is bulk velocity, p is partial
pressure, and ¢ is heat flux. The subscripts i and ¢ refer to
the ion and electron species while the subscripts || and L
represent the parallel and perpendicular component to B,
respectively. The components of the matrix A(x, 1) are
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where y is the electron to ion mass ratio m,/m; and ¢
represents the various thermal speeds; for example, ¢, =
/P, /p 1s the paraliel component of the ion thermal speed

while ¢,, =./p../p/x is the perpendicular component of
the electron thermal speed.

The terms on the right-hand side of (1) represent source
terms and have been grouped into three components, The
first of these source-term vectors is
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and represents the cffects of variations in the cross-sectional
area (proportional to 1/8) of the confining tube of magnetic
flux. The second source term in (1),
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represent sthe effect of changes in the volume of the tube of
plasma, due to plasma drifts in a plane perpendicular to the
magnetic ficld, where R is the radius vector of magnetic field
curvature. Finally, the third source term in (1),
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represents the effect of collisions; see [6] for more informa-
tion about the collisional operators denoted by the dot
accent marking, such as p.

2.1. Eigenvectors and Eigenvalues

The characteristic-based schemes for the Euler equations,
pieneered by Courant er al. [14] and Godunov [10],
advance data from one time level to another by following
characteristic lines in (x, t). Each wave in the system
propagates at its own wave speed and thus can be identified
with a particular characteristic. Godunov’s scheme differs
from those of Courant er al. in adopting the conservation
form of the [low equations; in consequence it is suitable for
flow containing shocks of any strength. Characteristic-
based schemes make explicit use of intrinsic properties
of the system of equations they approximate, so their
formulation requires a careful analysis of the system.

The system of equations described by (1) has 10 distinct
eigenmodes, each associated with a different wave speed
(eigenvalues of A). As will be discussed in more detail later,
the numerical technique requires transforming (1), by a
change of state variables, into a system of equations where
A is diagonal. For this transformed system, a linearized
Riemann problem is solved at each cell interface; this serves
to compute the fluxes of the original state quantities. This
information is then used to advance (1) in time with a
multi-stage scheme. The left and right eigenvectors of A are
important, as they are used to transform to the diagonal
system and back again. In this section we give approximate
expressions for both the eigenvectors and the eigenvalues
of A.

As shown by Gombosi and Rasmussen [6], the eigen-
values of A are

Ai=u+tc,, Ar=Uu—c,,
).3=H+C_, 14:u—C_,
As=u+cy)), Ae=u—c;y, (7)
A-,.=u+\/§c€“, )_3=u—\/§l£‘e”,
/:..9=M+C’E,“, l{lo=u—fe”,
where
¢y = ek + 6 £/ 24k )2 (8)

Of the eigenvalues given in (7}, only 45 ¢ ¢ 10 are exact. The
other eigenvalues are approximate, with 4 5 valid for small
values of y (a good approximation) and 4, , ;4 valid in the
limit of very small heat fluxes ¢ (not always guaranteed,
as shown later). These formulas are intended to give an
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idea of the scale of wave speeds encountered; in practice
the eigenvalues are obtained numerically, without any
approximation.

In general case, roots containing ¢, and ¢_ are the solu-
tions of a fourth-order algebraic equation. As is shown in
[9, 6], some of the eigenvalues can be complex in the case
of very large heat flows. In these cases, however, the
momentum expansion of the original distribution functions
is not convergent and the equations are not valid anyhow.
‘When the heat flows are extremely large, the distribution
function corresponding to the flow parameters is negative in
certain regions of the velocity space (see [6]), which
signifies their unphysical nature. Although we cannot prove
it geperally, based on their asymptotic behavior in certain
limits, we expect the eigenvaiues to be real when the heat
flows are reasonably small, namely |q,| < p;?*/p"/* and
ig. | < p,(p/p)"*. Our numerical experiments support this
prediction. Thus, in cases of interest (1) represents a hyper-
bolic system of equations suited for initial-values problems.
The problem of large heat flows is further investigated in the
next section.

It is interesting to note that the eigenvalues are all distinct
and evealy split about the flow velocity u. This differs from,
¢.g., the three-dimensional Euler equations, where three of
the five cigenvalues are equal to 4. The eigenvalues and
eigenvectors can be degenerate for certain special combina-
tions of flow parameters (e.g., when T, ;=T and h,;; =0
then A,=4; and A,=44} but there is no discontinuity
around such points and the singularity can be removed by
arbitrarily adding a very small pertuation to one of the flow
parameters,

The state variables in the diagonal system of equations,
also called “characteristic variables,” wili be denoted by W;
they appear in the analysis only in differential form. The
relation with the original state quantities can be written as

dv=U"!dw (9)

or, inversely,

dw=U dw, (10)

where the matrices U and U~! are compesed of the right
(column) eigenvectors and left (row) eigenvectors of A,
respectively. In other words, d#w is the projection of dw onto
the right eigenvectors of A; if we expand dw on the basis of
the right eigenvectors, the elements of 4% are the expansion
coeflicients.

As the mapping from the original to the diagonal system
of equations and vice versa is central to the numerical
scheme presented here, the left and right eigenvectors
performing this transformation are now given. The right
eigenvectors are

r P '1 r P W
¢y —c,

P(CZ+ _XCEH) p(ci _xciu)
—pe (xed, — % +3c) pedxed — % 4 3¢l

P 2
Uy = 0‘ . Up= 01 :
P Peiy
—2e, poy 2e, Py
Pel Pu
L 0 J \ 0 J
(11a}
~ P R f p h
c_ —c_
plet —xel) plel ~xel)
—pe_(xed -l +3¢}) po_(xed, — ¢t +3c})
25 P
U= 0‘ , U= OL ,
Pen Peny
—2e_pg 2e=pa
Py Per
L 0 J L 0 _J
(11b)
0 W 0 ) 0o )
0 0 X
3
0 0 0
0 0 0
Us=] P . Us=| —pis | UV,= 0 »
CinPiL CipPis 0
0 0 Pey
0 0 ﬁcenP.«u
L 0 L 0 0
o J o J - 0 J
(11c)
SRR
B 0 0
N
0 0 0
0 0 0
Uy= 0 , U= 0 . Ujo= 0
0 0 0
—Pe 0 0
\/jceni’en 0 0
0 Pel —Pel
L 0 J \. Copf Per ) \_€epj Pel )
{11d)

The left eigenvectors are
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We have not normalized the system of eigenvectors as
we need the relative values only. Just as the eigenvalues,
not all of the above eigenvectors are exact; the same
approximations used to obtain the eigenvalues (7) were
used to obtain the eigenvectors. In practice, both eigen-
values and eigenvectors are obtained numerically to ensure
accuracy, particularly when heat fluxes are not small.

2.2. Heat Fluxes

A physical argument can be made that the moment
expansions of Bolizmann’s equation represented by (1) are
valid only if the absolute values of the heat fluxes are smaller
than a certain limit [6]. Above that limit, the positivity
of the distribution function corresponding to the state
variables is not guaranteed. For instance, the normalized
heat flux,

iy =4qi/cy Py (13)
must remain less than unity in order for (1) to be valid. This
is problematic because there is nothing contained in the
generalized transport equations to insure that this occurs. In
fact, Palmadesso et al. [9] have solved {1) numerically and
found that normalized ion heat fluxes can grow to quantities
of order one and larger. One possible explanation for this is
that wave propagation in the perpendicular heat Nuxes is
unphysical [9]. These ion waves correspond to the normal
modes ws and W, described above.

In order to numerically test how accurately the above set
of transport equations describes a physical problem, one
must be assured that there are no numerical difficulties,
that, by themselves, could lead to an excessive growth of the
heat fluxes. One possibility for an excessive heat flux is that
a change or perturbation Aw in one of the components of
the state vector leads directly to an excessive change in one
of the heat fluxes. This possibility is now considered.

By (10) we know that a variation in the perpendicular
component of the electron heat flux, ¢, , , for instance, can
be expressed in terms of the characteristic variables by

10
Awio= Y Uy AW,

j=1

(14)

From (11) it is seen that only the elements U 5 and U5 4
are nonzero, so only the eigenmodes Wy and W, contribute
to jumps in ¢, . Furthermore, from (9} and (11}, in par-
ticular, from (U ~'),; and (U ~'),y, which have non-zero
elements only for j=1, 9, 10, it follows that changes in ¥g
and W, depend only on changes in p, p,,, and g,
(actually, onlyon T, | and g, ).

This linkage is shown graphically in Fig. 1. Any oscilla-
tion in, for instance, p, | (in the first column of the figure),
excites eigenmodes Wy and W g (in the second column). This
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FIG. 1. Partial coupling of the eigenmodes and plasma parameters,
A perturbation in p, | is ultimately coupled to ¢, , through the eigenmodes
Wq and W,. The transformations between representations are noted by the
matrix operators I ~! and U.

coupling is described by the matrix of left eigenvectors &/ ~!,
These eigenmodes will in turn excite g, , , as shown on the
right-hand side of the figure. Quantitatively, from (14),

Adg, = Aw g =c. por AWo+c Py Wio- (15}
In order to insure that the normalized heat flux /1, | remains
small, a necessary condition is that A, < 1. The same

condition must be put on 4w 5. From (9) and {11) it follows
directly that

4T,
2T,

AqeL
2ce|lpej_

Ay = (16)

Thus, we must require that relative changes in the per-
pendicular component of electron temperature, 4T, , /T, ,,
be much less than one,

An examination of perturbations in the other heat fluxes
leads to similar conclusions: as long as relative changes in
all of the components of w other than heat fluxes remain
much less than one, then changes in heat flux will be limited
accordingly. Of course, the influence of boundary condi-
tions and internal sources will also affect the heat flux will
be limited accordingly. Of course, the influence of boundary
conditions and internal sources will also affect the heat flux,
but these effects can be considered separately. For now,
we require that the magnitude of perturbations be small
and that the numerical simulation of wave propagation
faithfully reproduces the coupling represented by the

eigenvectors in {11) and (12). In the next section we describe
a numerical scheme to perform precisely this task.

3. NUMERICAL METHOD

In this section we develop a Godunov-type higher-order
scheme for the plasma transport equations. In particular,
the spatial discretization of the equations follows that of a
Godunov-type scheme such as MUSCL [11] or PPM
[15]. The time discretization, though, is done differently,
namely, by following the “method of lines” commonly
used for integrating ordinary differential equations. This
makes the space-time discretization modular, allowing
considerable flexibility in the choice of components.

3.1, Sparial Discretization

In a Godunov-type scheme, the distribution of flow
variables inside each computational cell is reconstructed
with the aid of cell-averaged values in the neighboring cells.
This leaves a discontinuity in the overall interpolant at each
cell interface. Starting from such initial values, it becomes
necessary to compute, exactly or in some approximation,
the breakdown of each discontinuity, that is, to solve
Riemann’s initial-value problem with the two interface
states as input states. In regular hydrodynamics, where the
equations can be fully written in the conservation form, this
step results in a unique set of interface fluxes for all of the
state variable; these contain all the information needed for
the temporal integration.

For the present set of equations the above approach must
be modified, as it is not possible to write the system (1)
entirely in the form of conservation equations. The culprit is
the ambipolar electric field, which couples the ion and elec-
tron fluids; it introduces terms that are not total derivatives.
This does not mean that ¢lectric energy does not satisfy a
conservation principle; it just means that, at a discontinuity,
ions and electrons do not conserve energy separately: the
electric field transfers energy between them. In other words,
there are fewer jump equations than variables. The transfer
of energy is determined by the fine-scale structure of the
so-called discontinuity, which in reality is not infinitely thin.

It must be emphasized that the present technique does
not attempt to resolve the detailed transfer inside the thin
layer. Instead, it relies on knowledge of all speeds of
finite-amplitude waves, even if some of these do not arise
from jump equations. Tt follows that properly simulating the
waves Is of the greatest importance,

A common approach to the discretization of non-conser-
vative terms is to regard them as source terms instead of
contributions to the fluxes—it is done routinely in flux-
corrected transport methods [16]. It is precisely this
approach that would lead to building incorrect wave speeds
into the approximate Riemann solver and jeopardize the
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ability of the method to properly represent the physics. The
technique proposed below is a refined version of the one
used by Kérdsmezey er ai [17].

For the subcell reconstruction of state variables quadratic
interpolation is used [12], subject to limiting of derivatives
as suggested by Koren [19]. When interpolating smooth
data, the interpolation is essentially quadratic, allowing a
third-order accurate updating scheme. The limiter prevents
interpolation across a discontinuity, thus preventing
numerical oscillations. Suppose we are interpolating some
conservative state variable W, in cell /, using its average
values W, ., W, ,_,,and W, incellsi, i—1, and i+ 1,
respectively. The limiter is a scalar funcion W(R); its
argument R represents the rate of change of the solution’s
derivative,

(17)

The interpolant of W, in cell i is the quadratic function
whose cell average equals W, , and whose interface values
are

_ 1 1 _ —
Wlx;_ 1/2+)= Wk,i_i ¥ (“R_) (Wk,r'+ 1— W)
o (18)

_ 1 - _
Wx; ., 2o )= Wk,r'+5 ll’(Rk,r‘)( Wei—Weis)

For more information about the method of interpolation,
see Appendix A. Koren’s choice of ¢ is

2R+ R
W(R) = 3o (19)

RP—~R+2

For smooth data, i.e., R~ |, this function is approximately
1+ 2R, corresponding to quadratic interpolation consistent
with the cell averages W), W{~1, and W{*", without
limiting.

Consider now the almost conservative form of the
equations; this can be written as

éW OF oW
F—I_E-I-L_E:S'

(20)
Here W is the vector of conserved state variables (the actual
choice of these variables is specified in Appendix B) and F
is the corresponding flux vector; the conservation form is
spoiled by the term with the matrix coefficient L, which
cannot be written as a flux derivative. Introducing the flux
Jacobian

dF

K-—. (21)

we may write (20) as

oW W W
— +K—+L-—=8 22
o TRt L, (22)
o1
oW oW
ow v _ 23
P +M e S, {23)
with
M=K+L. (24)

The matrix M relates to the matrix A in (1) by a similarity
transformation; its eigenvalues are the wave speeds
presented in Section 2.1,

The time-marching scheme, for which we shall choose an
explicit multi-stage scheme, updates the cell average W, and
therefore requires knowledge of @W/d1. This time derivative
must be evaluated afrer the resolution of the initial discon-
tinuities (i.e., at ¢+ 68t), so that the effect of the waves
moving into the cell from both sides is properly accounted

/_,/

t+5t

t+51 -

t

FIG. 2. Transport (by one right-going wave) of the discontinuities
which occur at cell boundaries. The reconstructed solutien at time ¢ (top
panel) is transported and shown at time ¢+ &7 in the middle panel. Wave
characteristics are shown in the bottom panel.
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for; see Fig, 2. Averaging over cell i changes the system of
equations into

oW, _ |

xiv2 0W
= ——— ax
Ot Axide_\n OF

i Xit 142
- M
Ax, l:‘[x.ﬁm

using a notation that is standard in describing upwind-
difference schemes we obtain

@Wi | Xi+1/2—
e

+M+(w;(u2+ ~W,_ )
+ M_ [wr’+ 12+ = wi+ 1,’2*)
Fi+ 12—
- sax].
Xi— 12+ t
The matrix M ™ is the “positive part” of M: it has the same
eigenvectors as M but has zero eigenvalues where M has
negative eigenvalues. The “negative part” M~ is similarly
defined. The matrix M is evaluated at a cell interface using
a special average W of the interface values W_ and W _;

using this average is advantageous because it yields a
discrete form of Eq. (21),

oW
_.dxHJ. '”de} . (25)
ox v P+ b1

Ni-i)2

IW
—dx
Xioyz4 dx

(26)

KAW =AF; (27)
see Roe [13]. Using this equation and the reiations
T =3(M+[M|), (28a}
M~ =3(M~—M|), (28b}
we can reduce the update equation to
aWi 1 Xt l2—
T PP [
aw Ki1fl=
xdv—[ s dr
Ox Xi-1/2+
1.
+ 3 Li (Wil =W n )
1.
+5Li+!./2(wi+lfl+ —Wi+l;’24) ) (29]
1t
with
Firvin=1Fis1n-+Fiiin,)
- % IM¢'1-1/2| (wii 1/2+ _Witlﬂu)’ (30)

resembling the usual flux-
function.

The fact that the matrix L is not a flux derivative has the
consequence that values of W/dx in the interior of cell i
appear explicitly. The cell integrals of L ¢W/dx and 8 in

practice are approximated by Simpson’s formula, e.g.,

upwind-biased numerical

Xit 172
[ sty ax

Xi— 122

Ax,
x—gi[S(x,--1,2+)+4S(x,-1+3(xf+m,n,; (31)

the values of § or any other quantity inside the cell follow
from the interpolant W{(x).

The variables belonging to the electron modes change
much more smoothly spatiaily than those of the ions, due
the strong heat conduction of electrons. To make the code
more ecfficient electrons arc represented on a four times
cruder grid than the ions the electron variables are trans-
ferred by interpolation to the ion component’s grid.

3.2. Sources

The generalized transport equations described above are
applicable in a variety of different flow regimes. In one
regime (near a planets’ surface, for instance), reactive and
collisional terms in the sources S may entirely dominate the
time evolution of the solution. In other regimes (at high
altitudes where densities are relatively low, for example),
reactive and collisional terms in S may be negligible and the
time evolution is dominated by transport. Frequently the
reactive time scales are much shorter than the transport
time scaies in at least a portion of the region being modeled.
This disparate variety of time scales slows down the numeri-
cal solution unless proper techniques are utilized to deal
with the stiffness.

We first examine the strongly reactive regime to examine
potential ways to speed up the numerical solution. In this
parameter regime transport can be neglected entirely and
the source terms are split into two components. For
instance, the conservation equation describing the evolution
of mass density per unit magnetic flux W, can be written as

(32)

where v, is a loss frequency describing the rate at which
mass is lost due to the recombination of ions with electrons.
in {32), source terms which are independent of the flow
parameters W (for instance, terms describing the produc-
tion of mass due to photoionization of a neutral species) are
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contained in §,. Note that.v, and §, are assumed to be
constant in time. Equation (32) then has the exact solution,

Wt + d1) = W1(1}+(%— Wl(:)) (1—e="4, (33)

1

which we exploit to develop a numerical scheme to advance
W, in time,

oW, =W (t+ Aty — W (1)

~

- (__ WI(:)) (1—e=nas, (34)

For v, 41 <1, Eq. (34) can be expanded in a Taylor’s series
to obtain

oW, ~v, At (g—‘— WI{I)),

1

(35)

with a truncation error of order (4¢)% It is noted that (35)
is just Euler’s method for advancing (32) forward in time.
In the other extreme, v, At 3 1, the change in W is

W, = (f—— Wi(r)) (36)

1

and W, reaches the steady-state solution of (32) in one time
step. Thus, it is scen that the exponential term on the
right-hand side of (34) acts as a limiter to reduce the change
in W, which can occur in a single time step.

The exponential limiter in (34) is used to stabilize the
numerical solution when 4t is allowed to be of the order of
v, or greater. It stabilizes the solution but it must be used
with caution. It was observed that the numerical solution
converges to a wrong steady state in some instances when
operator splitting was used to combine the transport terms
with the exponential growth and decay described by (32).
We have found that, in general, the full effects of transport
must be included in the 5, term in (34) in order for the
solution to converge to the correct steady state.

3.3. Time Marching

The characteristic time scale of the electron component is
much shorter than that of the ions. Despite the fact that we
are using a four times larger grid spacing for electrons, the
electron modes require much smaller time-step sizes than
the ion modes. To improve the efficiency of the code we
employ the method of “time-splitting.” First the ion modes
are advanced by a time step A, then the fast electron modes
are advanced by 24t in several steps of a smaller size, and
finally another ion step of At is performed.

The time integration of the ion equations was carried out

by the “method of lines.” The third-order scheme of Shu and
Osher [20] is used. If T is the operator advancing the
variable W by 4¢,

W(t+ Aty=T(W(2)), (37)
the scheme takes the form
W= T(W(O)),
W = 3w o 2wy, (38)

WO = LW® L 27w,

Here the superscripts denote the level of iteration, level 3 is
the end result after a time step A¢. The particular advantage
of this choice is that only the values of the previous level
have to be stored in addition to W' The individual time-
steps of the electron modes are calculated only with first-
order accuracy but, because there are about 10 electron
steps during one ion step, this provides at least the same
temporal accuracy as that of the ions on the scale of 4¢.
According to [21] this “time-splitting” scheme provides
at least second-order accuracy but, as eclectrons reach
equilibrium relatively quickly, an accuracy closer to third
order can be expected.

Let us summarize here the substeps which each evalua-
tion of T in (38) and in each electron time step includes:

= First, the actual values of the flow parameters and
their gradients at cell interfaces and in the middle of each
cell are reconstructed from the cell-averaged values by
means of the interpolants (Eqs. (18), (A3)).

» The contribution of M- (éW/dx} is calculated by
means of the generalized Riemann solver (terms in (29} con-
taining F or L).

» The sources L-(dW/dx) and S are evaluated at cell
interfaces and at cell midpoints and are combined by the use
of Simpson’s formula (31).

» Using (29) the cell-averaged values are updated from
time ! to ¢ 4+ At

4, EXAMPLE SOLUTIONS

The numerical scheme discussed above has been
implemented in a computer program and various tests have
been made. Numerical solutions to (1) are now shown for
two simple cases. In each of these examples, all sources
terms have been neglected. In particular, the assumption
that spatial derivatives of the magnetic field are negligible
(see (4)), implies that the area of the confining magnetic flux
tube is constant and removes coupling of wave modes which
are solely due to geometrical considerations, Neglect of the
source terms allows a clear demonstration of the decoupling
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of the different types of propagating waves. In the two cases
considered here, unperturbed density and temperatures
were n=100cm ™" and T, =37,, =300 K. Velocity and
heat fluxes were initially zero. The spatial step size used for
the tests was approximately 4 km and the Courant number
of the fastest wave was 0.8

The propagation of the ion thermal-heat wave is shown in
Fig. 3. In this example, two simple waves were excited by an
initial step jump in perpendicular ion temperature at
x =500 km. The magnitude of the temperature jump was
20 K (20% of the background). Both a left- and right-going
wave are noted in Fig, 3a, traveling away from the location
of the initial temperature jump with a speed of
¢ =90.23 km/s {see values given for A5 and 24 in (7)). The
spatial grid size was 4 km. The four times at which curves
are plotted are =300, 600, 900, and 1200s, where an
interval of 300 s is about 20 time steps.

Using the right and left eigenvectors given in Egs. (11)
and (12), it can easily be shown that 4k, ~ AT, /T, =
0.091 (the later is obtained from Fig. {3a). This value
accurately compares with the jumps in perpendicular heat
flux calculated by the numerical model and displayed in
Fig. 3b. While perpendicular heat flux perturbations are
expected to be excited by the initial temperature jump (due
to the coupling which occurs via eigenmodes ¥, and i),
other plasma parameters are not affected and therefore
are not plotted. In particular, mass and momentum
perturbations did not oceur in this example, as expected.

Numerical damping of the high-frequency compoenents of
the waves is evident in Fig, 3, as the initial sharp jump in
temperature no longer occurs over the width of one cell. By
{ =300 s the transition region has broadened somewhat, so
that the jump takes place over about six cells or a distance
of approximately 25 km. After this time the width of the
transition region increases only slightly, so that by 900 s the
jump takes place in about seven cells.

The propagation of the lon-acoustic mode is shown in
Fig. 4. In this example, four simple waves wre excited by an
initial 20 % density enhancement over two cells at the center
of the spatial grid. (The grid size is 2 km in this model run.)
Two of these waves propagate to the left and two to the
right at speeds given by the first four eigenvalues, 4, , 54,10
{7). For the background values listed above, the propaga-
tion speeds for the fast and slow modes are 0.617 km/s
and 0.290 km/s, respectively, and were very accurately
reproduced in the numerical solution. The density perturba-
tions seen in Fig, 4a are coupled through the first four eigen-
modes to velocity, parallel temperature, and parallel heat
flux. Thus, perturbations oceur in these quantities as well, as
can be seen in Figs. 4b—d. Excitation of the 1on thermai-heat
wave shown in Fig. 3 did not occur in this test, as expected.

While the wave speeds are faithfully represented, the wave
forms are difficult to describe numerically because of the
broad Fourier spectrum needed to describe a narrow square
pulse. After 300 s (Fig. 4a) damping of the high-frequency
end of the spectrum has already significantly broadened and
attenuated the pulses. The half-width of the fastest moving
pulses has increased to 11 cells, the slower pulses are eight
cells wide. In order to ensure conservation the amplitude of
the perturbation decreases correspondingly. During the
propagation of the waves it was found that the total mass in
the modeled region was conserved to within 1-2 %.

Exampiles of the ion modes have been shown only. Elec-
tron modes are somewhat different from the ions, primarily
because of their much higher wave speeds. The electrons
have both a parallel and a perpendicular thermal-heat wave,
in contrast to the ions, where only the perpendicular com-
ponents are thermal-heat waves. In the case of the ions,
parallel temperature and heat flux are coupled to mass and
momentum perturbations to form the ion acoustic wave.
Mass and momentum perturbations (which are carried by
the ions) are simply too slow and ponderous to be affected
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by the much faster parallel electron perturbations. The elec-
tron modes are solved on a grid with an increased step size
{in order to allow the time step not to be excessively small);
results for the electron thermal-heat waves are similar to the
ion waves shown in Fig, 3 and are not shown here.

The above examples demonstrate the scheme’s correct
behavior in the linear regime. Showing more compiex
calculations is beyond the scope of the present paper. For
the first “real world” application of the scheme see [18],
where O* ion outflow is modeled along a magnetic flux
tube in the Earth’s ionosphere and the temporal develop-
ment of disturbances in the flux is caused by magnetic
storms.

5, CONCLUSIONS

A numerical solution to the 16-moment set of transport
equations has been found which employs a high-order
Godunov scheme to achieve third-order accuracy in space
and second-order accuracy in time. A modification of the
“approximate Riemann solver” of Roe [13] was necessary
because the electric-field term, coupling the ion and electron

species, made it impossible to write the relevant set of equa-
tions in strict conservation form. In addition, a new tech-
nique has been developed to overcome the stiffness that
occurs in regions where plasmas flows are strongly reactive.
The 16-moment set of generalized transport equations
form a complicated hyperbolic initial-value problem. While
these equations have been solved previously for a plasma
embedded in a strong magnetic field, problems relating to
an uncontrolled growth in heat flux have been reported [9].
We have shown that perturbations in heat flux remain
properly bounded as long as relative perturbations in
other parameters are also small, eg., 4T /T, <1, This
conclusion has been supported by our numerical results.

APPENDIX A: INTERPOLATION FORMULAE

The Taylor expansion of the variables W around x; is
oW
W(x) = W) + == (x,)(x = x)

18°W

3707 (x)(x—x)2+0(4x*). (A1)
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Using this interpolation inside the cell containing x; the
cell-average of W(x) is

W 1 J-x;+1,~z W( ) i
e X X
Ax Xi- 102
W
=W(x o {(x,;) 457 + O{4x*).

J+ (A2}
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We can then express W(x) in terms of the cell-averaged
quantities,

W(x) =W+ 3, W(x)(x—x)
+IWLHx —x)* — 5{4x)' 1+ O(4x%), (A3)

where J,W(x;) and 82W are the derivatives calculated
using finite differences. For an equidistant grid, a possible
choice for these could be

1 -
é, W(X)*ZT(W:'H_W:'—I)

(Ad)
32W(x,)= 1 ( —2W,+W,_)).

As is mentioned in Section 3.1 we use piecewise parabolic
interpolation with the limiter function of Koren [19]
instead of (A4). With the use of the limiter the scheme is
third-order accurate spatially in regions where the flow
variables change smoothly, but in regions of sharp changes
{e.g., at shock boundaries) it changes from using centered
quadratic interpolation to one-sided linear interpolation, In
this way we avoid differencing across a shock transition,
thus preventing numerical oscillations.

i-1 i

i+1

FIG. 5. Polynomial interpolation of cell average quantities, The
vertical dashed lines denote the location of cell boundaries, circles
represent cell averages, and crosses represent interpolated quantities at the
cell boundaries.
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Another complication arises from the use of a non-
equidistant grid. Figure 5 shows the piecewise parabolic
interpolant. Using this approach, the expression for W(x) is

S _
W(x)=W, -2 L‘—f Y(RTIHW, . — W)

4, o
- Z‘_’ lsb(R«‘)(Wi_ Wi— 1)}

1

24x -W)

S| 5RO,
) (A5)
+ SR YR W~ W ._,)]u )

2A3x]: 2, VR

A _ _
- ZEURNW, - w,-_l)} (r—xP,

AW, —W)

where 4 —x,A_=x;—x;_,,and R, and ¢(R) is
given by (17) and (19), respectively.
From (A5) we can deduce that, instead of (Ad),

=Xt

1
8. W(x)~ —[—w(R YW, —W)

A, -
+ Z‘ 'ff’(Ri)(wi - Wr‘— 1):|

3 (A6)
azw‘v(x>~—7[ WRZYW s~ W)

_i 'ff’(Ri)(Wi‘ Wr’— 1)]

and that (A5) is equivalent to the Taylor expansion (A3}
using these derivatives. For an equidistant grid and
smoothly changing regions R, ~ 1, y(R)~ 1+ IR, and (A5)
converges to the result of the Taylor expansion (A3) with
the derivatives (A4). Evaluating (A5) at the cell boundaries
yields (18).

APPENDIX B: QUASI-CONSERVATIVE
FORM OF EQUATIONS

Ion Equations

There are scveral possibilities to write the part of (1) that
describes the ion component in the quasi-conservative form
(23). The choice closest to the form of a conservation prin-
ciple contains the derivatives of p only in non-conservative
terms. The disadvantage of using this form is that the state
variables containing heat fluxes contain additional terms
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which, in certain instances, can be much larger than the
actual heat fluxes, To avoid the numerical inaccuracy
resulting from this we use the same choice as in Eq. (2) for
these elements. The form we have chosen is the following:
the flow variables are

o1
W(')=§(P,P“= P”2+ansPueqH|, g% (B1)
the conserved fluxes are
s pu R
P“2+Piu
put+3up i + .y
N | up; +gq;
F(”zg Py 3q L ; {B2)
g, +3 p_u
il ) B
ug;, +P‘s||PiJ.
k_ p w

and the non-zere elements of the matrix L are

LY = yel,
L) = 2uye?,
. H i
L{) = =3 (Far+"L0),
p
Ly~ B3
2= (B3)
L6 = uzpu +ug; )
6,1 ’
p
Lg;=2upfi+q‘1,
g
i Piy
Ll =21=,
6,3 p
The form of the sources is
S(,) P P D.LB
B B Dt’
w_ £ Kk T, My + M.,
> T Bm, ox B
p. p prJ.+ch. 1 63
+outog, -t
B B B B@x

pub, B pu D, d\B
"B Dt B

D e

X k&T p
sur=g P K0 ru
3 B m Ox B
Mi||+MeH 0 P
+2u—B-—+-§u2+2§ugu
_2“(Pu+Pu)+4ula_B
B B ox

(B4)
( p,H) 1D, B
- W+
B B /B D

D , .
+2%uul(—i+u—6—)g+2e'—”u

Dt éx/B ° B R
{;)=£)£__ upiJ.+Qr'.Ll_a£
S B B B dx
N 1D, B o, -R
(B b TVt TR )
S(nz‘jf\l 3Pl ru_ﬂ 10,8 ,u,-R
* B g B B\B Dt R )

i Piy pPiL\|10B
+[ B”'*(B )]Bé‘x

There are derivatives of T, in the source terms; equations
for the electron state variables are solved separately by time-
splitting. For the averaging procedure at cell interfaces,
Roe’s averaging scheme [137] was used by introducing the
new variables

o Piy | .2 q:) Gu)T
= L, —Fu,p =},
\/;( p Tl

Unfortunately, as the nonlinearity of the equations is
stronger than in usual hydrodynamics, there are a few terms
in W and F that cannot be written as quadratic expressions
in terms of the new variables; this introduces some deviation
from the identity (27).

(B3)

Electron Equations
The electron variables in W are defined as

1
W(e)_—(Ter T, els Qepis ‘?ei_)

When transcribing the relevant equations from the set (1) to
the form (20) the conservative part was chosen to be zero
and all the spatial derivatives of the electron variables were
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treated as non-conservative terms. In this way no terms
have to be introduced to cancel the superfluous derivatives
of p in the gradient of the fluxes {e.g., (U ~'},o, in {12/)). In
the problems of interest the change in density may be large
and the inaccuracy in this cancellation can deteriorate the
solution.

The averaging procedure of Roe can be implemented by
simply using W'® as the variable to average. The possible
conservative fluxes {if we defined these) would be quadratic
{mostly linear) functions of these.
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